MicroRNA-7 protects against 1-methyl-4-phenylpyridinium-induced cell death by targeting RelA.
نویسندگان
چکیده
Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra. Mitochondrial complex I impairment in PD is modeled in vitro by the susceptibility of dopaminergic neurons to the complex I inhibitor 1-methyl-4-phenylpyridinium (MPP+). In the present study, we demonstrate that microRNA-7 (miR-7), which is expressed in tyrosine hydroxylase-positive nigral neurons in mice and humans, protects cells from MPP+-induced toxicity in dopaminergic SH-SY5Y cells, differentiated human neural progenitor ReNcell VM cells, and primary mouse neurons. RelA, a component of nuclear factor-κB (NF-κB), was identified to be downregulated by miR-7 using quantitative proteomic analysis. Through a series of validation experiments, it was confirmed that RelA mRNA is a target of miR-7 and is required for cell death following MPP+ exposure. Further, RelA mediates MPP+-induced suppression of NF-κB activity, which is essential for MPP+-induced cell death. Accordingly, the protective effect of miR-7 is exerted through relieving NF-κB suppression by reducing RelA expression. These findings provide a novel mechanism by which NF-κB suppression, rather than activation, underlies the cell death mechanism following MPP+ toxicity, have implications for the pathogenesis of PD, and suggest miR-7 as a therapeutic target for this disease.
منابع مشابه
MicroRNA-7 activates Nrf2 pathway by targeting Keap1 expression.
Nuclear factor E2-related factor 2 (Nrf2) is a key transcription factor that regulates the expression of a number of antioxidant and detoxifying genes that provide cellular protection against various stressors including reactive oxygen species (ROS). Nrf2 activity is tightly regulated by a cytoplasmic inhibitory protein called Kelch-like ECH-associated protein 1 (Keap1). The mechanism that cont...
متن کاملCalbindin-D28K prevents drug-induced dopaminergic neuronal death by inhibiting caspase and calpain activity.
Calbindin-D28K protects against apoptotic and necrotic cell death; these effects have been attributed to its ability to buffer calcium. In this study, we investigated the mechanisms underlying the neuroprotective effects of calbindin-D28K in staurosporine (STS)-induced apoptosis and 1-methyl-4-phenylpyridinium (MPP(+))-induced necrosis. Treatment of the dopaminergic neuronal cell line MN9D with...
متن کاملNeuroprotective role of thymoquinone against 1-methyl-4-phenylpyridinium-induced dopaminergic cell death in primary mesencephalic cell culture
OBJECTIVE To investigate potential mechanisms mediating the neuroprotective effect of thymoquinone (TQ) on dopaminergic neurons. METHODS This study was conducted in the Chemistry and Biochemistry Institute, University of Veterinary Medicine, Vienna, Austria between June and August 2013. Primary cultures were prepared from embryonic mouse mesencephala (OFI/SPF) at gestation day 14. Four sets o...
متن کاملProtective effects of PEP-1-Catalase on stress-induced cellular toxicity and MPTP-induced Parkinson’s disease
Parkinson's disease (PD) is a neurodegenerative disability caused by a decrease of dopaminergic neurons in the substantia nigra (SN). Although the etiology of PD is not clear, oxidative stress is believed to lead to PD. Catalase is antioxidant enzyme which plays an active role in cells as a reactive oxygen species (ROS) scavenger. Thus, we investigated whether PEP-1-Catalase protects against 1-...
متن کاملGinsenoside Rd Protects SH-SY5Y Cells against 1-Methyl-4-phenylpyridinium Induced Injury
Ginsenoside Rd (GSRd), one of the main active monomer compounds from the medical plant Panax ginseng, has been shown to promote neuronal survival in models of ischemic cerebral damage. As an extending study, here we examined whether GSRd could exert a beneficial effect in an experimental Parkinson disease (PD) model in vitro, in which SH-SY5Y cells were injured by 1-methyl-4-phenylpyridinium (M...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 34 38 شماره
صفحات -
تاریخ انتشار 2014